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Partition function of a spinor gas
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For a spinor gas, i.e., a mixture of identical particles with several internal degrees of freedom, we derive the
partition function in terms of the Feynman-Kac functionals of polarized components. As an example we study
a spin-1 Bose gas with the spins subjected to an external magnetic field and confined by a parabolic potential.
From the analysis of the free energy for a finite number of particles, we find that the specific heat of this ideal
spinor gas as a function of temperature has two maxima: one is related to a Schottky anomaly, due to the lifting
of the spin degeneracy by the external field, the other maximum is the signature of Bose-Einstein condensation.

PACS number~s!: 05.30.Jp, 03.75.Fi, 32.80.Pj
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I. INTRODUCTION

In this paper we extend our approach, introduced in R
@1,2# for a class of interacting polarized quantum systems
systems with internal degrees of freedom. After a review a
a generalization of our methods to the unpolarized case, t
feasibility is tested on a relatively simple confined mod
system of spin-1 bosons in an external magnetic field. T
partition function, the specific heat and the susceptibility
this trapped spinor gas are evaluated for 100 and 1000
ticles. Explicit analytical results in closed form were deriv
for six particles using symbolic algebra.

In the thermodynamic limit (N→` with a fixed density
r5N/V), Ginibre @3# provided a Feynman-Kac functiona
description of the quantum statistical equilibrium for syste
with internal degrees of freedom, based on the grand can
cal ensemble@4#. This approach, applied to quantum syste
@5,6# and quantum plasmas@7,8#, has recently been genera
ized by Cornu@9# to mixtures of identical particles in a
external magnetic field. A review of the methodology can
found in Ref.@10# with emphasis on low-density Coulom
systems.

The approach which we present here is based on a di
ent description@11,12#, although both Ginibre’s and our ap
proach have in common the replacement of second quan
tion by a direct use of the permutation symmetry in a p
integral. But there are essential differences in the way
the finite number of particles is incorporated in the theo
Furthermore, we treat here an unpolarized mixture of ide
cal particles.

Our approach avoids the thermodynamical limit a
keeps the relations between the density of states, the part
function for N particles, and their generating function mat
ematically exact@13#. These statistical quantities are show
to be transforms of each other, i.e., they arenot separately
definedon the basis of properties of an ensemble. The pa
tion functionZN(b) is the Laplace transform of the distribu
tion of statesVN(E) with b adjoint to the energyE. The
generating functionJ(b,g) of the partition function is aZ
transform ofZN(b) with the fugacityg adjoint to the num-
PRE 611063-651X/2000/61~4!/3358~8!/$15.00
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ber of particles. For a harmonic model with interactio
@2,13# we could show, using the appropriate saddle-po
methods reliable for the singular structure of the genera
function at largeN, that these transforms give the we
known relation between the fugacity—and thereby t
chemical potential—and the number of particles. Our deri
tion was largely inspired by the inversion method used
Fowler and Darwin@12# to obtain the relation between th
temperature and the internal energy. The temperature
measure for the internal energy and the chemical potentia
a characterization of the number of particles are quanti
obtained from the theory, whereas in an ensemble-based
proach~valid in the thermodynamic limit!, their definitions
belong to the theory. A similar statistical methodology h
been recently proposed by Bormannet al. @14# as a new
approach for systems with a finite number of particles,
though their method is only applicable for a partition fun
tion of a polarized system without any particle-particle inte
action.

Some models of harmonically confined systems with h
monic two-body interactions can be solved exactly. Th
have been studied using other techniques by many aut
@15–19#. The classical version of the model was alrea
studied by Newton@20,21#. The reason for the exact solv
ability is the reduction to a center-of-mass evolution and
evolution of the other degrees of freedom relative to the c
ter of mass, the latter being independent of each other@22#.
Despite the conceptual simplicity of this approach, the act
calculation turns out to be quite involved. Indeed, a gene
two-body interaction requires a cumulant expansion of
exponential in the Feynman-Kac functional with the imp
cation thatn-point correlation functions have to be calculat
for each higher order cumulant. These point correlation fu
tions have their own generating functions, which have to
inverted separately. A loop, as is well known from a fie
theoretic approach to the many-body problem, manifests
self in the irreducible part of an-point correlation function.
In principle, these loops can be used to simulate a ma
body system@5# or are used in a Mayer cluster expansi
@7,23# of the statistical quantities relevant for stability studi
3358 © 2000 The American Physical Society
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PRE 61 3359PARTITION FUNCTION OF A SPINOR GAS
of low-density Coulomb systems. Although this prescripti
is general, we have applied it only to the first order cumul
@24#, in using the Jensen-Feynman variational principle
optimize the free energy for realistic interaction potentia
The second cumulant would already require a four-point c
relation function.

Another extension of Ginibre’s approach@5,9#, considered
in this paper, concerns the spin degrees of freedom. We h
to project the fullN-body propagator for distinguishable pa
ticles on the irreducible representations of the permuta
group. In the calculation of the partition function of th
model we only need the diagonal part with respect to the s
degrees of freedom. This means that only those propaga
have to be considered where particles start and end in
same spin state after some Euclidean time lapse. This
plification cannot be made in the calculation of an-point
correlation function. In that case the evolution of a spin st
should be described by a continuous-time Markov proc
with discrete states@25#. These states serve as indices on
sample paths in the Feynman-Kac functional. Also wh
charges are present, the influence of the magnetic field on
charged particles can be taken into account with the s
methods@26#.

The care given to theN-body aspects in our formulatio
originates from the fact that a crossover from a density
pendent behavior to a behavior dependent on the numbe
particles is experimentally accessible. It has become poss
to produce assemblies of atoms whose internal energy i
small, that quantum effects such as Bose-Einstein conde
tion or Fermi-Dirac degeneracy become observable@27–30#.
The theoretical challenge posed by these systems is
particular kind of confinement and the relatively low numb
of atoms involved. This low number of atoms suggests t
there is a regime where the number of particles is more
portant than their density. The study of such a crosso
excludes the thermodynamical limit as an investigation t
@31#. The energy levels are primarily determined by the tra
ping potential, rather than by the confining volume used
most quantum-statistical studies. In the earliest experime
realizations of Bose-Einstein condensation the system
restricted to a specific internal degree of freedom; in pres
day studies this condition has been relaxed leading to
so-called trapped spinor quantum gases@32–34#, where an
equilibrium over the internal degrees of freedom can
reached.

In the present paper we illustrate the calculation te
niques for a boson gas with three internal degrees of f
dom. A preliminary report on the results of this investigati
can be found in Ref.@35#. The paper is organized as follow
In Sec. II we derive the quantum mechanical partition fun
tion of a mixture of identical particles, given only the tot
number of particles. In order to achieve this goal, we
through a number of steps. First we derive a partition fu
tion conditioned on a particular state of the internal degr
of freedom and a given number of particles as a Feynm
Kac functional @36–38# that can be obtained explicitly b
path integral calculations, at least for the model under c
sideration. The resulting propagator is projected on the s
metric or antisymmetric irreducible representation of the p
mutation group according to the boson or the ferm
t
o
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character of the particles. The cyclic decomposition of
permutations imposes a constraint on the summations
the cycle lengths. This difficulty is circumvented by intro
ducing a generating function for each conditioned partit
function, which can be inverted. The partition function of t
mixture is then obtained as an appropriate combination of
conditioned partition functions, from which the free ener
and the other thermodynamical quantities of the mixture
sult. We describe these steps using a harmonic boson m
supplied with a homogeneous external magnetic field,
with a Zeeman splitting of the spin degrees of freedom.
Sec. III the free energy, the susceptibility and the spec
heat will be obtained with emphasis on the low-temperat
properties and the thermal fluctuations of a boson gas.
nally, in Sec. IV we discuss the method and the obtain
results, and we conclude the paper with a brief summary
the work.

II. QUANTUM STATISTICS OF MIXTURES

In this section we provide the necessary background
terial to formulate a quantum statistical theory of mixtures
a fixed number ofN identical particles with internal degree
of freedom. Using the same approach as we developed@1,2#
for particles without internal degrees of freedom, we have
describe the state space and the evolution on that state s
using a process and a Feynman-Kac functional averaged
that process. We also have to indicate how the projection
the irreducible representations of the permutation group
to be done in order to ensure the indistinguishability of tho
particles that are in the same state of their internal degree
freedom. Finally, we give an expression for the partiti
function of the mixture.

A. The propagator of the harmonically confined model

The quantum model which we consider containsN
identical particles kept together in a confining potential giv
by

V15
1

2 (
m52s

s

Vm
2 (

k51

Nm

rm,k
2 , ~1!

whererm,k is the position vector of thekth particle in statem.
~Natural units with\ and the particle mass equal to unity a
used througout this paper.! The frequenciesVm are related to
the curvature of the parabolic confinement potential, wh
in principle might be different for each internal degree
freedom. We assume that there areNm particles that occupy
the statem. The total number of particles is obtained from

N5 (
m52s

s

Nm . ~2!

In the absence of interparticle interactions and fordistin-
guishableparticles, the propagator for the spatial degrees
freedom can be written as a product

KD~$rm,k9 %,bu$rm,k8 %,0!5 )
m52s

s

)
k51

Nm

K~rm,k9 ,burm,k8 ,0!uVm
, ~3!
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where$rm,k8 % represents a configuration of all the particles
the internal statem and with

K~ra ,burb,0!uw5S w

2p sinhwb D 3/2

3expF2
w

2

~ra
21rb

2!coshwb22ra•rb

sinhwb G .
~4!

We assume that the internal degrees of freedom beh
like a spin in an external homogeneous magnetic fieldB,
described by the Hamiltonian

H52mB•S. ~5!

Introducing for each particle the states characterized by
valuem of the spin component along the quantization ax

Szus,m&5mus,m&, m52s,2s11, . . . ,s, ~6!

one finds that the Euclidean time evolution for the spin sta
of the particle is given by

Ks~m9,bum8,0!5^s,m9uexp2bHus,m8&. ~7!

This propagator can be written in the spectral representa
by introducing a unitary matrixU that diagonalizesH,

UHU2152muBuSz , ~8!

as follows:

Ks~m9,bum8,0!5 (
mÄÀs

s

^s,m9uU21us,m&

3ebvm^s,muUus,m8&, ~9!

with vm5mmuBu.
Disregarding the statistics for the time being, the pro

gator for all the~distinguishable! particles including the in-
ternal degrees of freedom thus becomes

KD~$rm,k9 %,bu$rm,k8 %,0!

5 )
m52s

s FeNmbvm)
k51

Nm

K~rm,k9 ,burm,k8 ,0!uVmG . ~10!

The quantum evolution of the system is now defined as
lows: the particles are confined by a harmonic potential t
may differ according to their spin statem, and the statem of
the j th particle evolves as a spin-m state in a magnetic field
This model is an idealization because interaction between
spins of different particles is left out, spin-orbit coupling
pair formation is not considered, and there is no spatial tw
body interaction. But in the assumption that these inter
tions can be included, this simplified model still has to
studied as a zero order approximation.

B. The permutation symmetry and the generating function

From the propagatorKD for the distinguishable particles
the propagatorKmixt of the mixture, taking into account th
ve

e

s

n

-

l-
t
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-
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fermion or boson statistics, can be obtained by using
antisymmetric or symmetric projection as documented
Refs.@11,12#:

Kmixt~$rm,k9 %,bu$rm,k8 %,0!

5 )
m52s

s

eNmbvmKI~$rm,k9 %,bu$rm,k8 %,0!. ~11!

The expression for the propagatorKI($rm,k9 %,bu$rm,k8 %,0) of
identical particles in the same spin statem is

KI~$rm,k9 %,bu$rm,k8 %,0!5
1

Nm! (
P

jP)
k51

Nm

3K~rm,P(k)9 ,burm,k8 ,0!uVm
, ~12!

which represents a Feynman-Kac functional of the polari
components with spin statem, including all their permuta-
tionsP. Knowing the propagator, the partition function for
given distributionN2s , . . . ,Ns can be expressed as a mu
tiple integral:

Z~buN2s , . . . ,Ns!5F )
m52s

s

)
k51

Nm E drm,kG
3 )

m52s

s

eNmbvmKI~$rm,k%,bu$rm,k%,0!.

~13!

The calculation for each spin degree of freedom then p
ceeds in complete analogy with the polarized case@1#, lead-
ing to a partition function of a mixture with a given compo
sition of internal degrees of freedom

Z~buN2s , . . . ,Ns!5 )
m52s

s

eNmbvmZ~buNm!, ~14!

whereZ(buNm) is the partition function ofNm spin-polarized
particles

Z~buNm!5F )
k51

Nm E drm,kGKI~$rm,k%,bu$rm,k%,0!. ~15!

Of course, if the total numberN of particles is fixed, all
combinations of theN2s , . . . ,Ns ~with (m52s

s Nm5N) are
possible and we obtain the following expression for the p
tition function of the mixture:

Zmixt~buN!5 (
N2s50

N

(
N2s1150

N

. . . (
Ns50

N

C~N2s , . . . ,Ns!

3Z~buN2s , . . . ,Ns!, ~16!

C~N2s , . . . ,Ns!5

N!QS N5 (
mÄ2s

s

NmD
N2s!N2s11! •••Ns!

, ~17!
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whereC(N2s , . . . ,Ns) is a multinomial coefficient in which
Q(N5(mÄ2s

s Nm) expresses the constraint on the summ
tions, i.e., Q(x)51 if the logical variablex is true, and
Q(x)50 if the logical variablex is false. Using the expres
sion for the joint partition functionZmixt(buN) in terms of
the polarized partition functionsZ(buNm) one readily obtains

Zmixt~buN!5 (
N2s50

N

(
N2s1150

N

. . . (
Ns50

N

3FC~N2s , . . . ,Ns! )
m52s

s

Z~buNm!eNmbvmG .

~18!

This is the partition function that will be analyzed in th
next section. We consider there a gas of atoms with Bo
Einstein statistics confined in a harmonic potential, witho
interparticle interactions, and with the ability to adjust th
internal degrees of freedom in order to attain thermodyna
cal equilibrium. If the system is prepared in such a way t
the totalz component of all the spins can be fixed, then t
constraint can be taken into account using a technique de
oped in Ref.@39#. In this case one has also to calculate e
pression~18! first.

III. A SPIN-1 BOSE GAS

In this section we illustrate the feasibility of the propos
approach on a set of spin-1 bosons confined in a harm
potential, based on the partition function~18! of the mixture.
For simplicity, the many-body interaction, studied in Re
@1,2# to allow for oscillations of the center of mass with
different frequency than that of the oscillations of the int
nal degrees of freedom, is not taken into consideration h
This leads to a simpler albeit nontrivial model. The calcu
tion techniques can almost entirely be based on those
have been used for the polarized case@1,2#.

The generating functionJ(b,u)5(Nm50
` Z(buNm)uNm of

the partition functionZ(buNm) of each component in the
mixture is known from these previous calculations, a
given by

J~b,u!5expS (
l 51

`
1

l

b3/2l ul

~12bl !3D with b5e2bVm. ~19!

It should be noted thatu andb depend on the parameters
the spin-polarized subsystem. In the actual calculation
consider the same confining frequenciesVm5w for each
subsystem~not exploiting the possibility of different confin
ing potentials for different spin states!.

There exist many ways to derive recursion relations
tween the partition functions with a different number of pa
ticles @40–44#. A binomial expansion of the generating fun
tion almost immediately leads to

Z~buN!5
1

N (
n50

N21 S b(N2n)/2

12bN2nD 3

Z~bun!. ~20!

Combining the solutions forZ(buN) from the recursion re-
lations, the partition function of the mixture becomes
-

e-
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Zmixt~buN!5 (
N21

(
N050

N2N21 N!exp@~2N212N1N0!bvs#

N21!N0! ~N2N02N21!!

3Z~buN21!Z~buN0!Z~buN2N02N21!,

~21!

which is the key result of the present paper. Once this fu
tion is known the thermodynamical quantities can be o
tained in a straightforward manner.

A. Specific heat and magnetic susceptibility

The numerical representation of the results has to c
with very large numbers. For accuracy reasons the follow
transformation proves to be useful:

Zmixt~buN!5N!eNbvsb3/2NSmixt , ~22!

with

Smixt5 (
m50

N

(
n50

N2m

exp@2bvs~m12n!#
xN2m2nxmxn

~N2m2n!!m!n!
,

~23!

where the scaling of the polarized partition function is giv
by

Z~buN!5b3/2NxN , ~24!

with the appropriate recursion relation

xN5
1

N (
m50

N21
xm

~12bN2m!3
, with x051. ~25!

Remembering the definitionvm5mmuBu, it is clear thatvs
denotes the maximal possible frequency due to the magn
field.

The expected number of particles^Nm(buN)& in each spin
statem then takes the following form suitable for numeric
computation:

^N1~buN!&5
1

Smixt
(

m50

N

(
n50

N2m

n exp@2bvs~m12n!#

3
xN2m2nxmxn

~N2m2n!!m!n!
, ~26!

^N0~buN!&5
1

Smixt
(

m50

N

(
n50

N2m

mexp@2bvs~m12n!#

3
xN2m2nxmxn

~N2m2n!!m!n!
, ~27!

^N21~buN!&5N2^N0~buN!&2^N1~buN!&. ~28!

The same parametrization can be used to obtain the inte
energy of the mixture
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Umixt~buN,vs!52
d

db
ln@Zmixt~buN!#, ~29!

leading to

Umixt~buN,vs!5NS 3

2
w2vsD

1
1

Smixt
(

m50

N

(
n50

N2m

e2bvs(m12n)

3
xN2m2n

~N2m2n!!

xm

m!

xn

n!

3@UN2m2n1Um1Un1vs~m12n!#

~30!

~with Um the internal energy of the particles in spin statem).
The specific heat

C~buN,vs!5
d

dT
Umixt~buN,vs! ~31!

and the magnetic susceptibility (d/dB)Umixt(buN), propor-
tional to dU(buN,vs)/dvs , are easily obtained from thi
expression.

In Fig. 1 we show the specific heat, the magnetic exc
specific heat~i.e., the contribution to the specific heat du
to the magnetic field! and the magnetic susceptibility for 10
bosons. For 1000 bosons the same quantities are sh
in Fig. 2. The temperature is expressed in units ofTc
5w/k@N/z(3)#1/3, wherew is the frequency parameter of th
confinement, k is the Boltzmann constant, andz(3)
51. 202 056 903 is a Riemann zeta function. The freque
parameter for the internal degrees of freedom is expresse
units of w:

vs5wsw.

Using these units the expression forb becomes

b5expF2
1

t S z~3!

N D 1/3G
with t5T/Tc and exp(2bvs)5bws. Because there is a sub
stantial dependence on the magnetic field strength, the in
ence of the magnetic field can be illustrated by the redis
bution of the particles over the internal degrees of freedo
giving rise to the magnetic excess specific heat. The m
netic susceptibility clearly illustrates the dependence of
internal energy on the magnetic field strength.

B. The Schottky anomaly

In the specific heat plotted in Figs. 1 and 2 we have id
tified the low-temperature maxima as Schottky anomal
This contribution to the specific heat is attributed to the l
ing of the degeneracy of the levels of the spin degrees
freedom, due to the magnetic field. The effect occurs ir
spective of the boson statistics, as will be illustrated belo
s

wn

y
in

u-
i-
,

g-
e

-
s.

of
-
.

For up to six particles we calculated all polarized partiti
functions by symbolic algebra. This allows us to study t
free energy and the derived quantities exactly. Because
same calculation can be performed using Maxwe

FIG. 1. For 100 bosons the specific heat per particle~a!, the
magnetic excess specific heat per particle~b!, and the magnetic
susceptibility~c! are shown as a function of the temperature and
magnetic field.
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Boltzmann statistics, we may isolate the effect of the Bo
Einstein statistics on the Schottky anomaly.

For numerically exact calculations it is useful to factori
out the dominant behavior

FIG. 2. For 1000 bosons the specific heat per particle~a!, the
magnetic excess specific heat per particle~b!, and the magnetic
susceptibility~c! are shown on the same scale as in Fig. 1.
-

Z~buN!5zN~b!
b3N/2

)
n51

N

~12bn!3

. ~32!

The recursion relation for the resulting polynomialszN(b)
then becomes

zN~b!5
1

N (
n50

N21

zn~b!

)
j 5n11

N

~12bj !3

~12bN2n!3
. ~33!

The polynomialszN(b) for N51, . . . ,6were obtained by
integer arithmetic and the results of this calculation are lis
in Table I. For low temperatures (kT!w/2) the specific heat
is plotted in Fig. 3 as a function of the temperature and of
magnetic field. The contribution associated with the lifting
the degeneracy and the evolution to a single polarized s
with increasing magnetic field clearly manifests itself. W
have also studied the specific heat of 6distinguishablepar-
ticles with spin degrees of freedom. The result is shown
Fig. 4, and it also exhibits a maximum due to the Schot
anomaly. Comparing the specific heat of distinguishable p
ticles with that of bosons, it should be noted that the Bo
Einstein statistics only weakly influences the magnitude
Schottky anomaly. But its relative contribution is more pr
nounced for Bose-Einstein statistics than it is for Maxwe
Boltzmann statistics because the boson character suppr
the energy fluctuations at low temperature leading to
smaller specific heat.

IV. DISCUSSION AND CONCLUSION

First we review our method, then we comment on o
results for the spin-1 model and finally we will conclud
with a brief indication of the potential use of the method.
first striking difference between the method worked out h
and more standard approaches to the many-body proble
that we incorporate the statistics using directly the repres
tation theory of the symmetric group instead of the mo
common second quantization. As we indicated before, G
bre’s approach is based on the grand canonical ensem
whereas we based our method for particle-conserving
tems on the distribution of states, which we transformed
the partition function and its generating function. The te
perature and the chemical potential obtain their stand
meaning from the saddle-point method used to invert
transform. The numerical analysis for the spin-polarized c
published earlier@2,13# indicates that when there are suffi
ciently many particles, corrections to the saddle point inv
sion become negligible. We believe that this remains
case for unpolarized systems but we have not proven this

When internal degrees of freedom are involved, we
gued that a Feynman-Kac functional averaged over an
dexed Brownian motion describes the evolution of the s
tem. The projection on the appropriate irreducib
representation of the permutation group leads to a multi
mial combination of the spin states in the partition functio
The index process to distinguish between different s
states is not used explicitly, because only the diagonal pa
the spectral representation of the propagator of that pro
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TABLE I. In this table we list the polynomialszN(b) for N51, . . . ,6. Thecoefficients are obtained usin
integer arithmetic and symbolic algebra.

N PolynomialszN(b) in b5e2bw @see Eq.~33!#

0 1

1 1

2 113b2

3 113b217b316b416b5110b613b7

4 113b217b3118b4121b5147b6157b7187b8

180b9187b10163b11162b12127b13115b141b15

5 113b217b3118b4139b5174b61138b71252b8

1396b91600b101828b1111087b1211314b13

11503b1411585b1511560b1611416b17

11197b181921b191669b201413b211231b22

1105b23137b2416b25

6 113b217b3118b4139b5199b61180b71390b8

1715b911323b1012214b1113713b1215664b13

18589b14112 129b15116 683b16121 606b17

127 312b18132 442b19137 569b20141 147b21

143 674b22143 857b23142 756b24139 219b25

134 854b26129 120b27123 436b28117 565b29

112 733b3018388b3115304b3212994b33

11590b341687b351290b36175b37115b38
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is needed for the thermodynamics. The fact that we
construct a process for the evolution of the internal degr
of freedom is nevertheless important, not only for a be
understanding of the behavior of the system at long Euc
ean times~low temperature! but also for considering cor
relations between components in different internal sta
We indicated briefly that two-body interactions can be tak
into account by a cumulant expansion of the exponen
in the Feynman-Kac functional. This implies that one-poi
two-point, andn-point correlation functions have to be ca
culated. Other expansions, such as, e.g., the Mayer clu
expansion, can presumably also be carried out in our form

FIG. 3. The specific heat per particle is shown for 6 boso
distributed over 3 spin states in thermal equilibrium. The maxim
in the (C,ws) plane with fixedT is identified as the Schottky
anomaly. This is an entropic effect due to the lifting of the deg
eracy of the spin degrees of freedom by an external field.
n
s
r
-

s.
n
l

,

ter
l-

ism, but this point deserves further investigation.
In order to demonstrate the feasibility of the approach,

gave an example based on an exactly soluble harmonic
confined spin-1 boson gas in a magnetic field and calcula
the internal energy, the magnetic susceptibility, and the s
cific heat for the system in equilibrium. Furthermore, a
though we illustrated the technique without two-body inte
actions, it should be noted that the variational method t
we have applied to the spin-polarized case can also be
to study mixtures of identical particles with different degre
of freedom.

The example itself, a noninteracting boson gas, exhi

s

-

FIG. 4. The specific heat per particle for 6 distinguishable p
ticles is shown with Maxwell-Boltzmann statistics. Note the pre
ence of the Schottky anomaly. This figure should be compared w
Fig. 3 where the same quantity is shown taking the Bose Eins
statistics into account.
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Bose-Einstein condensation characterized by one of
maxima in the specific heat as a function of temperature
second maximum is due to the Schottky contribution to
specific heat. It should be noted that the Schottky anom
indicates that thez component of the total spin, which is zer
in the ground state, acquires values different from zero.
fact that this occurs at a lower temperature than the BEC
an ideal system may of experimental importance.

We conclude that the methods which we developed
polarized systems of identical particles can also be exten
to non-polarized systems, as shown in the present paper.
basic tools are a Feynman-Kac functional with an adap
process, the projection on the symmetric or antisymme
representations, and the path integral evaluation of the a
ages.
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