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Partition function of a spinor gas
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For a spinor gas, i.e., a mixture of identical particles with several internal degrees of freedom, we derive the
partition function in terms of the Feynman-Kac functionals of polarized components. As an example we study
a spin-1 Bose gas with the spins subjected to an external magnetic field and confined by a parabolic potential.
From the analysis of the free energy for a finite number of particles, we find that the specific heat of this ideal
spinor gas as a function of temperature has two maxima: one is related to a Schottky anomaly, due to the lifting
of the spin degeneracy by the external field, the other maximum is the signature of Bose-Einstein condensation.

PACS numbegs): 05.30.Jp, 03.75.Fi, 32.80.Pj

I. INTRODUCTION ber of particles. For a harmonic model with interactions
[2,13] we could show, using the appropriate saddle-point
In this paper we extend our approach, introduced in Refsmethods reliable for the singular structure of the generating
[1,2] for a class of interacting polarized quantum systems, tdunction at largeN, that these transforms give the well
systems with internal degrees of freedom. After a review andknown relation between the fugacity—and thereby the
a generalization of our methods to the unpolarized case, theshemical potential—and the number of particles. Our deriva-
feasibility is tested on a relatively simple confined modeltion was largely inspired by the inversion method used by
system of spin-1 bosons in an external magnetic field. Thgowler and Darwin12] to obtain the relation between the
partition function, the specific heat and the susceptibility oftemperature and the internal energy. The temperature as a
this trapped spinor gas are evaluated for 100 and 1000 pameasure for the internal energy and the chemical potential as
ticles. Explicit analytical results in closed form were deriveda characterization of the number of particles are quantities
for six particles using symbolic algebra. obtained from the theory, whereas in an ensemble-based ap-
In the thermodynamic limit {—c with a fixed density proach(valid in the thermodynamic limit their definitions
p=N/V), Ginibre [3] provided a Feynman-Kac functional belong to the theory. A similar statistical methodology has
description of the quantum statistical equilibrium for systemsbeen recently proposed by Bormaenal. [14] as a new
with internal degrees of freedom, based on the grand canonapproach for systems with a finite number of particles, al-
cal ensembl§4]. This approach, applied to quantum systemsthough their method is only applicable for a partition func-
[5,6] and quantum plasmdg,8], has recently been general- tion of a polarized system without any particle-particle inter-
ized by Cornu[9] to mixtures of identical particles in an action.
external magnetic field. A review of the methodology can be Some models of harmonically confined systems with har-
found in Ref.[10] with emphasis on low-density Coulomb monic two-body interactions can be solved exactly. They
systems. have been studied using other techniques by many authors
The approach which we present here is based on a diffef15—-19. The classical version of the model was already
ent descriptior{11,12, although both Ginibre’s and our ap- studied by Newtor{20,21]. The reason for the exact solv-
proach have in common the replacement of second quantizadility is the reduction to a center-of-mass evolution and an
tion by a direct use of the permutation symmetry in a pathevolution of the other degrees of freedom relative to the cen-
integral. But there are essential differences in the way thater of mass, the latter being independent of each dtP&j
the finite number of particles is incorporated in the theory.Despite the conceptual simplicity of this approach, the actual
Furthermore, we treat here an unpolarized mixture of identicalculation turns out to be quite involved. Indeed, a general
cal particles. two-body interaction requires a cumulant expansion of the
Our approach avoids the thermodynamical limit andexponential in the Feynman-Kac functional with the impli-
keeps the relations between the density of states, the partitiatation thain-point correlation functions have to be calculated
function for N particles, and their generating function math- for each higher order cumulant. These point correlation func-
ematically exacf13]. These statistical quantities are showntions have their own generating functions, which have to be
to be transforms of each other, i.e., they at separately inverted separately. A loop, as is well known from a field
definedon the basis of properties of an ensemble. The partitheoretic approach to the many-body problem, manifests it-
tion functionZy(B) is the Laplace transform of the distribu- self in the irreducible part of a-point correlation function.
tion of statesQQy(E) with B8 adjoint to the energye. The In principle, these loops can be used to simulate a many-
generating functiorE(3,vy) of the partition function is &  body system5] or are used in a Mayer cluster expansion
transform ofZy(B) with the fugacityy adjoint to the num- [7,23] of the statistical quantities relevant for stability studies
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of low-density Coulomb systems. Although this prescriptioncharacter of the particles. The cyclic decomposition of the
is general, we have applied it only to the first order cumulanpermutations imposes a constraint on the summations over
[24], in using the Jensen-Feynman variational principle tothe cycle lengths. This difficulty is circumvented by intro-
optimize the free energy for realistic interaction potentials.ducing a generating function for each conditioned partition
The second cumulant would already require a four-point corfunction, which can be inverted. The partition function of the
relation function. mixture is then obtained as an appropriate combination of the
Another extension of Ginibre’s approa®9], considered ~conditioned partition functions, from which the free energy
in this paper, concerns the spin degrees of freedom. We ha@?d the other thermodynamical quantities of the mixture re-
to project the fullN-body propagator for distinguishable par- sult. We describe these steps using a harmonic boson model,

ticles on the irreducible representations of the permutatioﬁl?t%p“eg with a hol_r;:_ogenfe?rlljs ex_ter;al magn?tfm f|gld, "Ie"
group. In the calculation of the partition function of the with-a zeeman spliting of Ih€ spin degrees ot freedom. n

. . .Sec. lll the free energy, the susceptibility and the specific
model we only need the diagonal part with respect to the SpIIﬁeat will be obtained with emphasis on the low-temperature

degrees of freedom. This means that only those propagatio ?operties and the thermal fluctuations of a boson gas. Fi-
have to be considered where particles start and end in t ally, in Sec. IV we discuss the method and the obtaiﬁed

same spin state after some Euclidean time lapse. This SiMasuilts, and we conclude the paper with a brief summary of
the work.

plification cannot be made in the calculation ofngoint
correlation function. In that case the evolution of a spin state
should be described by a continuous-time Markov process
with discrete statef25]. These states serve as indices on the

sample paths in the Feynman-Kac functional. Also when |n this section we provide the necessary background ma-
charges are present, the influence of the magnetic field on therial to formulate a quantum statistical theory of mixtures of
charged particles can be taken into account with the sama fixed number oN identical particles with internal degrees
methoddg 26]. of freedom. Using the same approach as we develp&i

The care given to th&l-body aspects in our formulation for particles without internal degrees of freedom, we have to
originates from the fact that a crossover from a density dedescribe the state space and the evolution on that state space
pendent behavior to a behavior dependent on the number &ing a process and a Feynman-Kac functional averaged over
particles is experimentally accessible. It has become possibf8at process. We also have to indicate how the projection on
to produce assemblies of atoms whose internal energy is g€ irreducible representations of the permutation group has
small, that quantum effects such as Bose-Einstein condenst® be done in order to ensure the indistinguishability of those
tion or Fermi-Dirac degeneracy become observé®ie-30. particles tha_lt are in the same state of th_elr internal degrt_a_es of
The theoretical challenge posed by these systems is thefe€dom. Finally, we give an expression for the partition
particular kind of confinement and the relatively low numberunction of the mixture.
of atoms involved. This low number of atoms suggests that
there is a regime where the number of particles is more im-  A. The propagator of the harmonically confined model

portant than their density. The study of such a crossover The guantum model which we consider contaiNs

excludes the thermodynamical limit as an investigation toolgentical particles kept together in a confining potential given
[31]. The energy levels are primarily determined by the trapy

ping potential, rather than by the confining volume used in

most quantum-statistical studies. In the earliest experimental 1 B Nm

realizations of Bose-Einstein condensation the system was Vi=5 2 Q3> i, (1)
restricted to a specific internal degree of freedom; in present m=-s k=l

day studies this condition has been relaxed leading to the ) . o
so-called trapped spinor quantum gaf@2—34, where an wherer .,  is the position vector of thkth particle in staten.

equilibrium over the internal degrees of freedom can bdNatural units with and the particle mass equal to unity are
reached. used througout this papeihe frequencie$) ,, are related to

In the present paper we illustrate the calculation techthe curvature of the parabolic confinement potential, which

niques for a boson gas with three internal degrees of fred Principle might be different for each internal degree of
dom. A preliminary report on the results of this investigationfé€dom. We assume that there &g particles that occupy
can be found in Ref35]. The paper is organized as follows. the statem. The total number of particles is obtained from
In Sec. Il we derive the quantum mechanical partition func- <

tion of a mixture of identical particles, given only the total

number of particles. In order to achieve this goal, we go N:m;s Nin- @
through a number of steps. First we derive a partition func-

tion conditioned on a particular state of the internal degreeg, the absence of interparticle interactions and distin-

of freedom and a given number of particles as a Feynmaryishapleparticles, the propagator for the spatial degrees of
Kac functional[36-3§ that can be obtained explicitly by faadom can be written as a product

path integral calculations, at least for the model under con-
sideration. The resulting propagator is projected on the sym-

s Npy
metric or antisymmetric irreducible representation of the pery " o 0)= K(r" r0) 3)
mutation group according to the boson or the fermion ° (i Bl i mlz_[—s kﬂl mio Pl miOla,

Il. QUANTUM STATISTICS OF MIXTURES
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where{r;, ,} represents a configuration of all the particles infermion or boson statistics, can be obtained by using the

the internal statén and with antisymmetric or symmetric projection as documented in
Refs.[11,12:
W 312
K(ra,ﬁ|fb,0)|w=<m) Kmixt({ i BT m it 0)
2, .2 S
w (ri+rg)coshwB—2r,-r © " /
xexg — b (et (B)COSWA— 2y To) =TT eMnbomk, ({1 Bl O). 1
2 sinhwpg m=—s
4

The expression for the propagatiy({ry, },Bl{rm«}0) of

We assume that the internal degrees of freedom behavéentical particles in the same spin states
like a spin in an external homogeneous magnetic figld N
described by the Hamiltonian 1 o

Ki({rmd Bl{rnd 0=~ 2 €11
m P k=1

H=—uB-S. (5)

. . . XK(ry r 12
Introducing for each particle the states characterized by the (mpgo AlrmkOla,, (12

valuem of the spin component along the quantization axis . ) _
which represents a Feynman-Kac functional of the polarized

S/|s,my=m|s,m), m=—s,—s+1,... 5, (6)  components with spin stat®, including all their permuta-
tions P. Knowing the propagator, the partition function for a
one finds that the Euclidean time evolution for the spin stategiven distributionN_g, ... ,Ng can be expressed as a mul-
of the particle is given by tiple integral:
Ky(m”,B|m’,0)=(s,m"|exp— BH|s,m’). (7

s Nm
II II drmk

m=-s k=1 }

Z(BIN_g, ... Ng)=

This propagator can be written in the spectral representation
by introducing a unitary matri}J that diagonalize$+,

S
UHU'=—ulB|S,, ®) Xmﬂ_s S (i BT i O)
as follows: (13
S
_ The calculation for each spin degree of freedom then pro-
" ’ — ” 1
Ko(m'", Blm ’0)_m;_s (s,m"|U~[s,m) ceeds in complete analogy with the polarized ddgelead-
ing to a partition function of a mixture with a given compo-
x ePom(s,m/U[s,m’), (99  sition of internal degrees of freedom

with @, = um|B. s
Disregarding the statistics for the time being, the propa- Z(BIN_g, ... Ng= [l eNmPomz(BIN,), (14
gator for all the(distinguishablg particles including the in- m=-s

ternal degrees of freedom thus becomes _ N ) ) _
whereZ(B|N,,) is the partition function oN, spin-polarized

Ko({rmihBHrmih0 particles
s N N,
= 1T je"nenl] Ky BlrneOla, |- (0 7(BINw=| [ fdrmk K ({Fmich BT mich0). (15)
m=-—s = = , , ,

The quantum evolution of the system is now defined as fol-
lows: the particles are confined by a harmonic potential tha&
may differ according to their spin state and the staten of ome . . .

4 . . . L possible and we obtain the following expression for the par-
the jth particle evolves as a spin-state in a magnetic field. . : : :

i . : S . . tition function of the mixture:
This model is an idealization because interaction between the
spins of different particles is left out, spin-orbit coupling or N N

Of course, if the total numbeX of particles is fixed, all
mbinations of theN_g, ... Ng (with =} __N,=N) are

N
pair formation is not considered, and there is no spatial two- _ N)= o C(N N
body interaction. But in the assumption that these interac- 3w BIN) N,ES: ,glzo N;O (N-s. ... N
tions can be included, this simplified model still has to be
studied as a zero order approximation. XZ(BIN-s, ... Ny, (16)
. . . S
B. The permutation symmetry and the generating function NIO| N= 2 Nm)
From the propagatdf for the distinguishable particles, m=-s

C(N-s, .. N = (17)

the propagatoK ,; of the mixture, taking into account the SN gl NG
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whereC(N_g, ... Ng) is a multinomial coefficient in which N-N_y N!exp{(ZN 1—N+Ng) Bwg]
O(N=3%__N,) expresses the constraint on the summa- 3mix(BIN)= 2 N INg (N=Ng=N_!
tions, i.e., ®(x)=1 if the logical variablex is true, and N-1 - o o

0(x)=0 if the logical variablex is false. Using the expres- XZ(ﬁ|N71)Z(ﬁ|No)Z(B|N—No—Nfl),
sion for the joint partition functiorBi(B|N) in terms of

the polarized partition functiori&(8|N,,) one readily obtains (21
N which is the key result of the present paper. Once this func-
Bmixt( BIN) = E E Z tion is known the thermodynamical quantities can be ob-
Nos+1=0  Ng=0 tained in a straightforward manner.
X|C(N_g, ... 'NS)mI:_[—s Z( B|N ) eNmPem| A. Specific heat and magnetic susceptibility

19) The numerical representation of the results has to cope
with very large numbers. For accuracy reasons the following

This is the partition function that will be analyzed in the transformation proves to be useful:
next section. We consider there a gas of atoms with Bose-

Einstein statistics confined in a harmonic potential, without 3mia( BIN) = N1 eMoospIRNG (22
interparticle interactions, and with the ability to adjust their

internal degrees of freedom in order to attain thermodynamiW'th

cal equilibrium. If the system is prepared in such a way that

the totalz component of all the spins can be fixed, then this NN XN—m—nXmXn

constraint can be taken into account using a technique devel-Smixt= mE:O nzo exH — Bog(m+ 2”)](N_ m—n)!min!’
oped in Ref[39]. In this case one has also to calculate ex- 23)
pression(18) first.

where the scaling of the polarized partition function is given
I1l. A SPIN-1 BOSE GAS by

In this section we illustrate the feasibility of the proposed
approach on a set of spin-1 bosons confined in a harmonic Z(BIN)=b¥ Ny, (24)
potential, based on the partition functi@tB) of the mixture.
For simplicity, the many-body interaction, studied in Refs.with the appropriate recursion relation
[1,2] to allow for oscillations of the center of mass with a
different frequency than that of the oscillations of the inter- 1 N1
nal degrees of freedom, is not taken into consideration here.
This leads to a simpler albeit nontrivial model. The calcula-
tion techniques can almost entirely be based on those that
have been used for the polarized cfsg)]. Remembering the definitiom,,= um|B]|, it is clear thatw,

The generating functioE(ﬂ,u)=E°N"mZOZ(B|Nm)uNm of  denotes the maximal possible frequency due to the magnetic
the partition functionZ(B|N,,) of each component in the field.

mixture is known from these previous calculations, and 1h€ expected number of particlen(8|N)) in each spin
statem then takes the following form suitable for numerical

Xm

== ————, with xo=1. 25
XN Nm§=:O(1—bN_m)3 Xo (25

given by :
computation:

*° 1 b3/2/u/
E(ﬁ,u)=exp( > YT with b= #%m, (19 N N-m

/=1 (1=0) (Ni(BIN)=g— 2 3 nexd — Bog(m+2n)]

ixt m=0 n=0

It should be noted that andb depend on the parameters of
the spin-polarized subsystem. In the actual calculation we XN-m—nXmXn (26)
consider the same confining frequenci@g,=w for each (N-m—-n)!m!n!”’

subsystemnot exploiting the possibility of different confin-

ing potentials for different spin states N N-m
There exist many ways to derive recursion relations be- (NO(ﬁIN))— Z >, mexg — Bwsm+2n)]

tween the partition functions with a different number of par- ixt m=0 n=0

ticles[40—44. A binomial expansion of the generating func-

XN-—m-nXmXn

tion almost immediately leads to W Jimint (27
—m—n)!m!n!
L N2 pN-m)r2 3
2PN = 2 (—1_an) Zpim. (20 (N_1(BIN))=N—(No( BIN))~(Ny(BIN)).  (28)

Combining the solutions foZ(B|N) from the recursion re- The same parametrization can be used to obtain the internal
lations, the partition function of the mixture becomes energy of the mixture
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d
Umixt(ﬁ“\l’ws): - @ln[Bmixt(ﬁ“\l)]v (29

leading to

Umixt(:8|N1ws): N(iW_ ws)

1 N N-m
+ 2 E e—Bws(m+2n)
Smixt m=0 n=0

XN—m-n @&
(N=m—n)! m! n!

X[UncmentUpt+ U+ ogm+2n)]
(30)

(with U, the internal energy of the particles in spin staie
The specific heat

d
C(:G|vas): ﬁumixt(ﬁ|N1ws) (31)

and the magnetic susceptibilityl{d B) U ,ix:(8|N), propor-
tional to dU(BIN,ws)/dws, are easily obtained from this
expression.

In Fig. 1 we show the specific heat, the magnetic excess
specific heatf(i.e., the contribution to the specific heat due
to the magnetic fiel[dand the magnetic susceptibility for 100
bosons. For 1000 bosons the same quantities are shown
in Fig. 2. The temperature is expressed in units Tof
=w/kN/{(3)]Y%, wherew is the frequency parameter of the
confinement, k is the Boltzmann constant, and(3)
=1.202056 903 is a Riemann zeta function. The frequency
parameter for the internal degrees of freedom is expressed in
units of w:

Wg=WgW.

Using these units the expression fobecomes

1/3
o 4

with t=T/T. and expf Bwy)=hb"s. Because there is a sub- 3
stantial dependence on the magnetic field strength, the influ-
ence of the magnetic field can be illustrated by the redistri-
bution of the particles over the internal degrees of freedom,
giving rise to the magnetic excess specific heat. The mag-
netic susceptibility clearly illustrates the dependence of the
internal energy on the magnetic field strength.

%%
e
TS
S ORSoSeS
‘:;\“O

©

FIG. 1. For 100 bosons the specific heat per partiele the
magnetic excess specific heat per partigdg and the magnetic
B. The Schottky anomaly susceptibility(c) are shown as a function of the temperature and the
In the specific heat plotted in Figs. 1 and 2 we have idenmagnetic field.

tified the low-temperature maxima as Schottky anomalies.
This contribution to the specific heat is attributed to the lift-  For up to six particles we calculated all polarized partition
ing of the degeneracy of the levels of the spin degrees ofunctions by symbolic algebra. This allows us to study the
freedom, due to the magnetic field. The effect occurs irrefree energy and the derived quantities exactly. Because the
spective of the boson statistics, as will be illustrated below.same calculation can be performed using Maxwell-
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N=1000

FIG. 2. For 1000 bosons the specific heat per pariialethe
magnetic excess specific heat per partidgde and the magnetic
susceptibility(c) are shown on the same scale as in Fig. 1.
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b3N/2
ZBIN) =zy(B) .
IT (1-b73
n=1

The recursion relation for the resulting polynomialy 8)
then becomes

N
v-r o L a-n)?
1 j=n+1
B = nzo Zn(ﬁ)m- (33

The polynomialszy(B) for N=1, ... ,6were obtained by
integer arithmetic and the results of this calculation are listed
in Table 1. For low temperaturekT<w/2) the specific heat
is plotted in Fig. 3 as a function of the temperature and of the
magnetic field. The contribution associated with the lifting of
the degeneracy and the evolution to a single polarized state
with increasing magnetic field clearly manifests itself. We
have also studied the specific heat ofliStinguishablepar-
ticles with spin degrees of freedom. The result is shown in
Fig. 4, and it also exhibits a maximum due to the Schottky
anomaly. Comparing the specific heat of distinguishable par-
ticles with that of bosons, it should be noted that the Bose-
Einstein statistics only weakly influences the magnitude of
Schottky anomaly. But its relative contribution is more pro-
nounced for Bose-Einstein statistics than it is for Maxwell-
Boltzmann statistics because the boson character suppresses
the energy fluctuations at low temperature leading to a
smaller specific heat.

IV. DISCUSSION AND CONCLUSION

First we review our method, then we comment on our
results for the spin-1 model and finally we will conclude
with a brief indication of the potential use of the method. A
first striking difference between the method worked out here
and more standard approaches to the many-body problem is
that we incorporate the statistics using directly the represen-
tation theory of the symmetric group instead of the more
common second quantization. As we indicated before, Gini-
bre’s approach is based on the grand canonical ensemble,
whereas we based our method for particle-conserving sys-
tems on the distribution of states, which we transformed to
the partition function and its generating function. The tem-
perature and the chemical potential obtain their standard
meaning from the saddle-point method used to invert the
transform. The numerical analysis for the spin-polarized case
published earlief2,13] indicates that when there are suffi-
ciently many patrticles, corrections to the saddle point inver-
sion become negligible. We believe that this remains the
case for unpolarized systems but we have not proven this yet.

When internal degrees of freedom are involved, we ar-
gued that a Feynman-Kac functional averaged over an in-
dexed Brownian motion describes the evolution of the sys-
tem. The projection on the appropriate irreducible
representation of the permutation group leads to a multino-

Boltzmann statistics, we may isolate the effect of the Bosemial combination of the spin states in the partition function.

Einstein statistics on the Schottky anomaly.

The index process to distinguish between different spin

For numerically exact calculations it is useful to factorize states is not used explicitly, because only the diagonal part of

out the dominant behavior

the spectral representation of the propagator of that process
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TABLE 1. In this table we list the polynomialg(B) for N=1, . . ., 6. Thecoefficients are obtained using
integer arithmetic and symbolic algebra.

N Polynomialszy(B) in b=e A" [see Eq(33)]

1
1

1+3b?

1+3b?+ 7b3+ 6b*+ 6b°+ 100°+ 3b’

1+3b%+7b%+ 18b*+ 2105+ 47b%+ 5707 + 87h®
+80b°%+ 87010+ 6301+ 62012+ 27013+ 15p 144 p15

5 1+3b%+ 7b3+ 18b*+39%°+ 74b%+ 1387 + 258
+396°+ 601+ 82811+ 10812+ 13113
+ 1503+ 158%H 15+ 156016+ 1416
+1191%®+921b1%+ 6620+ 413071+ 231b%?
+ 10523+ 370%*+ 6b%°

6 1+3b%+ 7b3+ 18b*+ 39>+ 998+ 180h” + 39h®
+71%°%+ 132319+ 221411+ 371D 1%+ 566413
+858M 1+ 12 12H 5+ 16 68D+ 21 60617
+27 315184 32 4419+ 37 56520+ 41 14D
+43 6745%°+ 43 85D%3+ 42 7560+ 39 21H%°
+34 85426+ 29 12M0?7+ 23 4368+ 17 56H%°
+12 733394 838& 314 5304324 299433
+ 159034+ 68703+ 2936+ 75037+ 15038

A WO DN PF O

is needed for the thermodynamics. The fact that we catism, but this point deserves further investigation.

construct a process for the evolution of the internal degrees In order to demonstrate the feasibility of the approach, we
of freedom is nevertheless important, not only for a betteigave an example based on an exactly soluble harmonically
understanding of the behavior of the system at long Euclideonfined spin-1 boson gas in a magnetic field and calculated
ean times(low temperaturg but also for considering cor- the internal energy, the magnetic susceptibility, and the spe-
relations between components in different internal statescific heat for the system in equilibrium. Furthermore, al-
We indicated briefly that two-body interactions can be takerthough we illustrated the technique without two-body inter-
into account by a cumulant expansion of the exponentiahctions, it should be noted that the variational method that
in the Feynman-Kac functional. This implies that one-point,we have applied to the spin-polarized case can also be used
two-point, andn-point correlation functions have to be cal- to study mixtures of identical particles with different degrees
culated. Other expansions, such as, e.g., the Mayer clustef freedom.

expansion, can presumably also be carried out in our formal- The example itself, a noninteracting boson gas, exhibits

Distinguishable

FIG. 3. The specific heat per particle is shown for 6 bosons FIG. 4. The specific heat per particle for 6 distinguishable par-
distributed over 3 spin states in thermal equilibrium. The maximumticles is shown with Maxwell-Boltzmann statistics. Note the pres-
in the (C,w,) plane with fixedT is identified as the Schottky ence of the Schottky anomaly. This figure should be compared with
anomaly. This is an entropic effect due to the lifting of the degen-Fig. 3 where the same quantity is shown taking the Bose Einstein
eracy of the spin degrees of freedom by an external field. statistics into account.
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